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1 Introduction

The aim of this paper is to give a notation for the magnetic field error coef-
ficients of helical dipoles. These coefficients shall be the magnetic multipole
coefficients of ordinary dipoles when the helical wave length tends to infinity.
Such a notation is different from Ref, [1].

For comparison, the magnetic field error notation for ordinary dipoles will
be presented first. The notation for helical dipoles is given thereafter.

2 Magnetic Field Errors of Ordinary Dipoles

In a current free region in vacuum where the electrical field 7 is constant, the
magnetic field B can be derived from a scalar potential 9 as

B=-vy. (1)

We will use a Cartesian coordinate system (z,y,z) and a cylindrical coordi-
nate system (r,6,z). Here,  denotes the horizontal, y the vertical and z the
longitudinal direction. Furthermore we have

z=r cosd,
(2)

y=r sinf.

We consider a dipole of infinite length, thus neglecting fringe fields. The sym-
metry condition of such an element reads

P(r,0,2) = 9(r, 0,2+ Az) (3)
where Az is arbitrary. Therefore, the potential 9 is independent of 2:

¥(r,0,2) = ¢(r,6). 4)



Having a main field By in y-direction, the solution of the Laplace equation
At = 0 can be written in cylindrical coordinates as

Y(r,0) = —Bo{rsiné' +
(5)

> 1 il

+2 T 7 [0 008 ((n+1)6) + busin (n + 1)9)]},

n=0

The term —Bgrsind gives the main field and the coefficients a, and b, de-
note deviations from the main field. The b, are called “normal” and the a,
“skew” multipole coefficients. Here, the subscript “0” denotes a dipole, “1” a
quadrupole etc. 7 is a reference radius. For the RHIC dipoles ro = grco,-z is
used with r¢,5 = 40 mm.

From equations (1) and (5) the magnetic field can be obtained in cylindrical
coordinates. We have

B, = By {sim? + E (_7%)" [an cos ((n+ 1)8) + by sin ((n + 1)9)]} )

By = By {cosﬂ + Z (:—O)n [br cos ((n + 1)6) — an sin ((n + 1)9)]} » (6)
B, =0.

The Cartesian components of B can be written as

B, = By {i (Z) ton costut) + 5, sin(nen} ,

n=0

By, = By {1 + Z (r—f;) [by, cos(nf) — ap sin(nﬁ)]} )
n=0
B, =0,

which can also be expressed as

B, +iB, = By

1+ i(bn + ian) (z j:oiy)n] . (8)

n=0

Note that the European notation (see for example Ref. [2]) differs from the
American one presented here. The transformation is

b, (American) = byy.1(EBuropean), 9)

an(American) = —a, 41 (European). (10)



3 Magnetic Field Errors of Helical Dipoles

We consider again a magnet of infinite length, thus neglecting fringe fields. The
symmetry condition for a helical dipole is

P(r,0,2) = P(r,0 — kAz,z+ Az), (11)

where Az is arbitrary. In other words, 6 — kz = const. k = 2n/)X is the wave
number and A the wave length of the helix. & shall have the positive sign for
right-handed and the negative sign for left-handed helices. Introducing the new
variable

0=0—kz, (12)

the symmetry condition (11) leads to a potential 4/ which is only dependent on
r and 6:

P(r,0,2) = p(r,0). (13)

The tilde shall remind the reader of the fact that g in a helix is similar to 8 in
a ordinary dipole. Using (r,6) as coordinates and having a transverse helical
main Field By a solution of the Laplace equation Ay = 0 is (cf. Eq. (5) and
Ref. [1])

W(r,8) = —30{211 (kr)sin 6+

2n+1 n+1)| 1
+ Z (n+1)nt2 pofn+l Ing1((n+ 1)kr) x (14)

x [Ein cos((n + 1)8) + by sin((n + 1)‘5)] }

where I, are modified Bessel functions. Similar to the ordinary dipole case,
the term -—Bg%fl (kr)sin @ yields the main field and the coefficients b,, @, the l
deviations thereof. Here, the En are called “normal” and the @,, “skew” helical
multipole coefficients (with respect to the direction of the main field Bg). The
subscript “0” denotes a helical dipole, the subscript “1” a helical quadrupole
etc. rp is again a reference radius.

The factors in (14) are chosen in such a way as to obtain the potential (5)
when the helical wave length tends to infinity. In this case ¥ — 0, # — ¢ and
the Bessel function can be approximated by (cf. Ref. [3])

12"
In(Z) ~ 57"--7—1—'. (15)



Now, the magnetic field can be computed as (cf. Ref. [1])

B, = Bo{zq(kr) sin 6 +

2 ot 4 1) 1

x [an cos((n + 1)5) + by sin((n + 1)5)] }
By=~B,, (16)
B, = —Bo{2I1 (kr) cosd +

2 tl(n 4 1) 1
+ Z (n+ 1)n+1 rokn Liya((n + 1)kr) x

X [bn cos((n + 1)d) — &7 sin((n + 1)5)] };

where I denotes the derivative with respect to the argument of the Bessel
function.

Since the Bessel function is nonlinear, the magnetic field of a helical dipole
is nonlinear too, even the main field given by By. Close to the magnet axis we
have » — 0 and the field can be approximated by

By = —Bysin(kz),
By = Bgcos(kz), (17)
B, = —Bqk [z cos(kz) + ysin(kz)],

i.e. even close to the magnet axis there is a longitudinal field component that
will lead to coupling.
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